Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Aqueous trivalent metal batteries represent a compelling candidate for energy storage due to the intriguing three‐electron transfer reaction and the distinct properties of trivalent cations. However, little research progress has been achieved with trivalent batteries due to the inappropriate redox potentials and drastic ion hydrolysis side reactions. Herein, the appealing yet underrepresented trivalent indium is selected as an advanced metal choice and the crucial effect of substrate on its plating mechanism is revealed. When copper foil is used, an indiophilic indium‐copper alloy interface can be formed in situ upon plating, exhibiting favorable binding energies and low diffusion energy barriers for indium atoms. Consequently, a planar, smooth, and dense indium metal layer is uniformly deposited on the copper substrate, leading to outstanding plating efficiency (99.8–99.9%) and an exceedingly long lifespan (6.4–7.4 months). The plated indium anode is further paired with a high‐mass‐loading Prussian blue cathode (2 mAh cm−2), and the full cell (negative/positive electrode capacity, N/P = 2.5) delivers an excellent cycling life of 1000 cycles with 72% retention. This work represents a significant advancement in the development of high‐performance trivalent metal batteries.more » « less
- 
            Abstract Metal-free electrocatalysts represent a main branch of active materials for oxygen evolution reaction (OER), but they excessively rely on functionalized conjugated carbon materials, which substantially restricts the screening of potential efficient carbonaceous electrocatalysts. Herein, we demonstrate that a mesostructured polyacrylate hydrogel can afford an unexpected and exceptional OER activity – on par with that of benchmark IrO 2 catalyst in alkaline electrolyte, together with a high durability and good adaptability in various pH environments. Combined theoretical and electrokinetic studies reveal that the positively charged carbon atoms within the carboxylate units are intrinsically active toward OER, and spectroscopic operando characterizations also identify the fingerprint superoxide intermediate generated on the polymeric hydrogel backbone. This work expands the scope of metal-free materials for OER by providing a new class of polymeric hydrogel electrocatalysts with huge extension potentials.more » « less
- 
            To achieve specific applications, it is always desirable to design new materials with peculiar topological properties. Herein, based on a D2h B2Cu6H6 molecule with the unique chemical bonding of planar pentacoordinate boron (ppB) as a building block, we constructed an infinite CuB monolayer by linking B2Cu6 subunits in an orthorhombic lattice. The planarity of the CuB sheet is attributed to the multicenter bonds and electron donation-back donation, as revealed by chemical bonding analysis. As a global minimum confirmed by the particle swarm optimization method, the CuB monolayer is expected to be highly stable, as indicated by its rather high cohesive energy, absence of soft phonon modes, and good resistance to high temperature, and thus is highly feasible for experimental realization. Remarkably, this CuB monolayer is metallic and predicted to be superconducting with an estimated critical temperature (Tc) of 4.6 K, and the critical temperature could be further enhanced by tensile strains (to 21 K at atmospheric pressure).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
